本文共 3575 字,大约阅读时间需要 11 分钟。
所谓的Aggregate模式,其实就是聚合模式,跟masterWorker模式有点类似,但其出发点不同。masterWorker模式是指master向worker发送命令,worker完成某种业务逻辑。而聚合模式则刚好相反,由各个worker完成某种业务逻辑后,把结果汇总发给某个actor,这个actor不一定是masterActor。
class AggregateMasterActor extends Actor{ override def receive: Receive = { case cmd: AggregateCommand.Aggregate => // 将此次汇总结果汇报给from,为了简化,此处用self替代 val from = self val backendActor = context.actorOf(Props(new AggregateMasterBackendActor(from,cmd.parallel)),s"AggregateMasterBackendActor-${cmd.at}") backendActor ! cmd case AggregateBackendEvent.WorkDone(sum) => val from = sender() println(s"AggregateMasterActor [${self.path.name}] 收到 ${from.path.name} 汇总结果 $sum") }}class AggregateMasterBackendActor(replyTo:ActorRef,parallel:Int) extends Actor{ var counter = 0 var sum = 0L override def receive: Receive = { case AggregateCommand.Aggregate(_) => println(s"AggregateMasterBackendActor [${self.path.name}] 开始工作,parallel $parallel,工作结果汇总给 ${replyTo.path.name}") 1 to parallel foreach { i => val worker = context.actorOf(Props(new AggregateWorker(self)),s"AggregateWorker-$i") worker ! AggregateBackendCommand.Aggregate(i,parallel) } case AggregateWorkerEvent.WorkDone(result) => counter += 1 sum += result if(counter == parallel){ replyTo ! AggregateBackendEvent.WorkDone(sum) context.stop(self) println(s"AggregateMasterBackendActor [${self.path.name}] 工作结束退出") } }}class AggregateWorker(replyTo:ActorRef) extends Actor{ def calcResult(index:Int,parallel:Int):Long = index * parallel override def receive: Receive = { case AggregateBackendCommand.Aggregate(index,parallel) => println(s"AggregateWorker [${self.path.name}] 开始工作 index=$index,工作汇总给 ${replyTo.path.name}") val result = calcResult(index,parallel) replyTo ! AggregateWorkerEvent.WorkDone(result) println(s"AggregateWorker [${self.path.name}] 工作结束退出") context.stop(self) }}object AggregatePattern { def main(args: Array[String]): Unit = { val system = ActorSystem("AggregatePattern",ConfigFactory.load()) val aggregateMasterActor = system.actorOf(Props(new AggregateMasterActor),"AggregateMasterActor") aggregateMasterActor ! AggregateCommand.Aggregate(3) }}
输出:
AggregateMasterBackendActor [AggregateMasterBackendActor-1531383454073] 开始工作,parallel 3,工作结果汇总给 AggregateMasterActorAggregateWorker [AggregateWorker-1] 开始工作 index=1,工作汇总给 AggregateMasterBackendActor-1531383454073AggregateWorker [AggregateWorker-2] 开始工作 index=2,工作汇总给 AggregateMasterBackendActor-1531383454073AggregateWorker [AggregateWorker-3] 开始工作 index=3,工作汇总给 AggregateMasterBackendActor-1531383454073AggregateWorker [AggregateWorker-1] 工作结束退出AggregateWorker [AggregateWorker-3] 工作结束退出AggregateWorker [AggregateWorker-2] 工作结束退出AggregateMasterBackendActor [AggregateMasterBackendActor-1531383454073] 工作结束退出AggregateMasterActor [AggregateMasterActor] 收到 AggregateMasterBackendActor-1531383454073 汇总结果 18
从代码来看该设计模式也比较简单,就是由Master创建以临时的子actor,此处命名为MasterBackend,将汇报对象的actorRef以构造函数的形式传递给MasterBackend,此处为了简单用self替代;MasterBackend根据并行参数,创建对应个数的workerActor,并把本身的actorRef以构造函数的形式传递给workerActor,workerActor执行具体的业务逻辑,并将汇总结果,发送给replyTo(也就是MasterBackend);MasterBackend收到workerActor的汇总结果,根据并行参数,判断所有子actor是否执行结束,若执行结束,此次计算完成,将汇总后的结果,发送给replyTo(也就是MasterActor)。
上面这种设计模式有一个明显的好处,就是Master可以迅速创建大量的聚合工作而不阻塞,因为它收到命令后,只是简单的创建MasterBackend,工作交给它去执行,这个过程非常快。如果某个聚合工作比较慢,并不会影响其他任务。
之所以说这个设计模式非常重要,是因为在spark/storm等大多分布式框架中都有它的影子。他们都选择将功能进行拆解,专门的节点或actor分别负责任务的接收、创建、执行、汇总这些工作,工作之间互不影响。如果能够深刻的理解这种设计模式,你将会设计出一个架构分层合理、互相解耦的高质量应用系统。
转载地址:http://grgpa.baihongyu.com/